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Abstract—Constructing 3D representations of object geome-
try is critical for many downstream robotics tasks, particularly
tabletop manipulation problems. These representations must
be built from potentially noisy partial observations. In this
work, we focus on the problem of reconstructing a multi-
object scene from a single RGBD image, generally from a fixed
camera in the scene. Traditional scene representation methods
generally cannot infer the geometry of unobserved regions
of the objects from the image. Attempts have been made to
leverage deep learning to train on a dataset of observed objects
and representations, and then generalize to new observations.
However, this can be brittle to noisy real-world observations
and objects not contained in the dataset, and cannot reason
about their confidence. We propose BRRP, a reconstruction
method that can leverage preexisting mesh datasets to build
an informative prior during robust probabilistic reconstruction.
In order to make our method more efficient, we introduce the
concept of retrieval-augmented prior, where we retrieve relevant
components of our prior distribution during inference. The
prior is used to estimate the geometry of occluded portions of
the in-scene objects. Our method produces a distribution over
object shape that can be used for reconstruction or measuring
uncertainty. We evaluate our method in both simulated scenes
and in the real world. We demonstrate the robustness of our
method against deep learning-only approaches while being more
accurate than a method without an informative prior.

I. INTRODUCTION

The ability to construct internal representations of its
operating environment is key for robot autonomy. These
representations need to be particularly fine-grained for robotic
manipulation, which often requires closely interacting with
and avoiding objects. These interactions make it necessary for
robots to develop an understanding of the geometry within
their vicinity. Explicit 3D representations of the geometry
of the scene are often required for the robust usage of
downstream grasping and motion planning algorithms. These
representations must be built from observations that are both
noisy and, due to occlusion, only contain partial information
of the scene. In our case, we focus on the problem of building
a 3D representation of multi-object scenes from a single
RGBD camera image.

One approach to this problem is to train a neural network
to predict the full geometry of an object given a partial
view. Such approaches are able to use existing mesh datasets
to more accurately infer the occluded backside of objects.
Unfortunately, these approaches also tend to have a number of
problems when used on real-world depth cameras. The pres-
ence of unknown objects, significant occlusion, noisy point
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Figure 1: Our method, BRRP, (a), (b) takes an input segmented
RGBD image, and (c) retrieves objects to use as a prior, which
allow it to (d) reconstruct the scene as well as (e) capture principled
uncertainty about object shape.

clouds, or inaccurate segmentation prevents these methods
from being reliably deployed in less-structured environments.

Deep learning methods for 3D reconstruction generally
lack a sense of uncertainty about the shape of the object.
This can be particularly detrimental when an object in the
scene is only partially observed and we seek to factor in the
geometry of observed and occluded regions. Such uncertainty
can enable safer and more robust operation in a range of
downstream tasks, such as robot grasping [1], [2], safe motion
generation and active learning.

Another common approach to building full 3D representa-
tions from a partial view is to build a representation, solely
from the observed data without considering prior information
from mesh datasets. A common example of this is the Gaus-
sian Process Implicit Surface [3] model. A more recent ex-
ample is V-PRISM [4], which probabilistically maps tabletop
scenes without using prior information. These reconstruction
methods are more robust to unknown objects because they
do not rely on any training distribution. However, this also
means that they cannot reconstruct the unobserved backside
of objects. Humans have the remarkable ability to infer the
geometry of scenes based on prior experience, we seek to
imbue robots with the same capability.

In this work, we introduce a novel Bayesian approach
for robustly reconstructing multi-object tabletop scenes by
leveraging object-level shape priors. We present Bayesian
Reconstruction with Retrieval-augmented Priors (BRRP).
BRRP is resilient to many of the pitfalls of learning-based
methods while still being able to leverage an informative
prior to more accurately reconstruct known objects. To fur-
ther improve efficiency, we introduce the idea of a retrieval-



augmented prior, where we retrieve relevant components of
our prior distribution based on classification results. We begin
with an observed RGBD image with corresponding instance
segmentations. Then, we compute an identification result that
predicts which objects from our database should be retrieved
to use as a prior during reconstruction. We use this prior along
with a sampled likelihood to infer a posterior distribution over
object shapes. Because we solve for a distribution, we can
recover principled uncertainty about each object’s shape. In
practice, we use a pre-existing foundation model to perform
the identification and use registration to make our prior pose
invariant. An example scene and reconstruction can be seen
in Figure 1.

We conduct experiments on BRRP in both procedurally
generated scenes and in the real world. We quantitatively
show that BRRP results in accurate reconstructions and that
BRRP is robust to unknown objects in the generated scenes.
We qualitatively show that BRRP is robust to noisy real
world scenes collected from an RGBD camera, and is able
to capture uncertainty within the reconstructions.

Our three primary contributions can be summarized as
follows:

1) The formulation of retrieval-augmented priors for
Bayesian inference.

2) A formulation for a prior over Hilbert maps with pose
and scale invariance

3) A novel, robust Bayesian scene reconstruction method
that utilizes prior information from existing mesh
datasets

Our paper has the following organization. We overview
related works in Section II. In Section III we cover the
necessary mathematical preliminaries for our method. In
Section IV, we introduce the concept of retrieval-augmented
priors. Our method, BRRP, is introduced in Section V. Then,
we perform experiments in Section VI before a conclusion
in Section VII

II. RELATED WORKS

3D Representations. There are many different ways of
representing 3D geometry of a scene. In the mapping litera-
ture, techniques such as truncated signed distance functions
[5] build voxelized representations of an environment. Hilbert
maps [6], on the other hand, are a continuous occupancy map
that takes the form of a linear function over some hinge point
feature space. Hilbert map representations have also been
extended to Bayesian Hilbert maps of various forms [7]–[9].
Neural implicit functions have also been used to represent
continuous 3D geometry [10]–[12]. Other representations are
built using differentiable rendering and combining multiple
views, especially for novel-view synthesis. A Neural radiance
field (NeRF) [13] is an example of this, in which a neural
network maps 3D position to density and color. 3D Gaussian
splatting [14] tackles a similar but with a set of Gaussians in-
stead of a neural network. Foundation models have also been
developed for this task in [15] and applied to robotics [16].
Other representation primitives have been studied, including
super quadrics [17].

3D Reconstruction with Deep Learning. Many methods
have been proposed as ways to leverage deep learning to
reconstruct scenes or objects. While some methods aim to
predict object shape from RGB data only [18]–[21], we
instead focus on using depth measurements during recon-
struction. DeepSDF [10] is a method to reconstruct an object
by running inference-time optimization to recover a latent
code for a neural implicit function. In the context of robotics,
[22] extends DeepSDF to have uncertainty-awareness. Other
work, such as occupancy networks [11] or PointSDF [23]
try to directly predict such a latent code without inference-
time optimization. Deep learning has also been leveraged to
learn kernels, which are used to construct a continuous signed
distance function [24], [25]. Language is also used during
reconstruction in [26] and [27]. Another work uses a voxel-to-
voxel variational autoencoder conditioned on bounding boxes
[28]. While these works typically focus on single object
scenes, other work focuses on reconstruction scenes with
multiple occluding objects. For example, [29] learns a recon-
struction from a voxel representation with different channels
to account for occlusion. Another method uses silhouettes
to refine the initial reconstructions [30]. In practice, these
deep learning approaches can struggle to reconstruct noisy
scenes with multiple, highly occluded, unknown objects on
real world depth cameras. Inaccurate segmentation can also
be a problem for many of these methods as well.

3D Reconstruction without Deep Learning. There are
also many approaches to perform probabilistic 3D recon-
struction without deep learning. Some of such methods for
reconstruction use informative prior information by assuming
fixed classes of objects, such as 3DP3 [31]. Other methods
use an uninformative prior, such as Gaussian process implicit
surfaces (GPIS) [3]. While there is an extension of GPIS to a
slightly more informative prior [32], the only priors that can
be enforced are specifically spherical, ellipsoidal, cylidrical,
or planar priors. In our work, we derive our prior from pre-
existing mesh datasets. V-PRISM [4] is another method that
probabilistically maps the scene using a multi-class framing.

Using Reconstructions in Manipulation. 3D reconstruc-
tion methods have seen extensive use in manipulation. In
[23], PointSDF provides collision constraints during grasp-
ing. PointSDF is also utilized in [33], where tactile sensors
are used along with the reconstruction during grasping.
A learning-based voxel representation is used for grasping
in [34]. Neural shape completion is also used during the
anthropomorphic grasping pipeline proposed in [35]. GPIS is
also a common representation for manipulation applications.
Some recent work has utilized the uncertainty from GPIS
representations during grasp selection [1], [2]. We believe
BRRP provides principled uncertainty measurements that can
similarly be utilized in downstream manipulation tasks.

III. BACKGROUND

A. Hilbert Maps

A Hilbert map [6] is a continuous occupancy map. It
represents the environment by a continuous function that is
defined by a linear function of a fixed feature transform.



Figure 2: (a) A hinge point feature transform induced by a set of
hinge points is used by Hilbert maps [6]; (b) these maps are built
by first sampling negative samples along the unoccupied portions
of the camera ray.

Typically this feature transform is induced by a set of hinge
points, {h1, ...,hH} ⊂ R3 and a translation-invariant kernel
k(d). The transform is then defined as:

ϕ(x) = [1, k(x− h1), ..., k(x− hH)]⊤.

Typically, a Gaussian kernel is used and hinge points are
placed in an evenly-spaced grid. An occupancy map can then
be defined by a single weight vector, w ∈ RH+1, as such:

m(x) = σ(w⊤ϕ(x)).

To recover the weight vector corresponding to a given
depth observation, negative sampling is performed along
the unoccupied portions of the depth rays. These negative
samples are assigned a label of unoccupied and the points at
the end of the ray are labeled as occupied. Then, stochastic
gradient descent (SGD) is performed on the binary cross
entropy (BCE) of the negative samples and terminal points
of the ray. The binary cross entropy measures the likelihood
of the samples, and is defined as:

BCE(y,w⊤ϕ(x)) =

{
− ln

[
σ
(
w⊤ϕ(x)

)]
, y = 1

− ln
[
1− σ

(
w⊤ϕ(x)

)]
, y = 0

(1)
Figure 2 shows an illustration of both the hinge point feature
transform and the negative samples used during Hilbert map
construction.

Hilbert maps have previously been extended to Bayesian
Hilbert maps, where a distribution over weights is modeled
as a multivariate Gaussian [7]–[9]. There is also a multiclass
variant that defines a weight matrix with Gaussian rows
described in [4]. In this work, we adopt the Hilbert map
representation, but model the distribution over weights as a
collection of particles. This allows our method the capability
to capture irregular, non-Gaussian posterior distributions.

B. Stein Variational Gradient Descent

Stein Variational Gradient Descent (SVGD) [36] is an
algorithm for variational inference that closely resembles gra-
dient descent. The general problem of variational inference
is to find a distribution q∗ ∈ Q that is close to some target
distribution p. Usually, this takes the form of an optimization
problem over the Kullback-Leibler (KL) divergence:

q∗ = argmin
q∈Q

KL(q∥p).

SVGD aims to iteratively transform q in descent directions
of the KL divergence in a d-dimensional reproducing kernel
Hilbert space (RKHS), Hd. Because this Hilbert space is a

space of functions, a descent direction requires deriving the
functional gradient of our KL divergence objective.

Theorem 1: From [36]. Let T (x) = x + f(x), where
f ∈ Hd and q[T ] is the density of random variable z = T (x)
when x ∼ q. Then

∇fKL(q[T ]∥p)|f=0 = −g∗q,p,

where g∗q,p = Ex∼q(x)[k(x, ·)∇x ln p(x) +∇xk(x, ·)].
In SVGD, q is approximated by a set of particles

x
(0)
1 , ...,x

(0)
P ∼ q(x). This can be used to approximate the

gradient in Theorem 1 with ĝ∗:

ĝ∗(x) =
1

P

P∑
i=1

k(xi,x)∇xi
ln p(xi) +∇xi

k(x, ·). (2)

The particles can then be iteratively updated according to ĝ∗

in Equation (2) with:

x
(t+1)
i = x

(t)
i + ϵĝ∗(x

(t)
i )

The result of these iterations is that the set of particles
converges to an approximation of the target distribution
p. Importantly, Equation (2) only relies on the gradient
of the log of p, which means we can perform variational
inference to an unnormalized distribution. Such unnormalized
distributions are commonplace in many Bayesian inference
problems, including ours.

IV. RETRIEVAL-AUGMENTED PRIORS

Retrieval-augmented generation [37] was originally intro-
duced in the context of improving language generation. The
work has served as inspiration for an approach to affordance-
prediction in [38]. In our case, we draw inspiration from
retrieval-augmented generation, but we use the retrieved
results to improve efficiency in certain explicit formulations
for prior density functions during Bayesian inference.

To motivate retrieval-augmented priors, consider the prob-
lem of Bayesian inference with a mixture model acting as the
prior distribution. Given some data, we would like to infer a
posterior distribution over hypotheses. If we have a mixture
model as a prior distribution, then:

P (H|D) ∝ P (D|H)

C∑
c=1

P (H|c). (3)

If our prior distribution has a lot of components, it may be in-
efficient to fully evaluate. This could be a serious problem for
algorithms like SVGD, which requires iteratively computing
the gradient of both the likelihood and prior. Inspired by [37],
the insight behind retrieval-augmented priors is to determine
which subset of the prior distribution components to retrieve
and use given some detection result R. Conditioning on
this detection result, we have a new posterior distribution,
P (H|D,R). Making an independence assumption,

P (H|D,R) ∝ P (D|H) · Ec∼P (c|R)[P (H|c)].
Comparing to Equation (3), the expectation now replaces the
true prior. Then, we can use a top-k approximation for the
expectation:

P (H|D,R) ∝ P (D|H)
∑
c∈topk

P (H|c)P (c|R) (4)



Figure 3: Overview of BRRP method. We begin with a segmented RGBD image and (a) feed cropped images of each segment into CLIP
to get object probabilities (Section V-B) Then, we retrieve and (b) register the the top-k objects in the prior. This gives us a set of registered
prior samples (Section V-A). We also (c) compute negative samples based on the observed segmented point cloud (Section V-C). Finally,
(d) we run SVGD optimization to recover a posterior distribution over Hilbert map weights (Section V-D). We can use this distribution
to both reconstruct the scene as well as measure uncertainty.

This means that we only need to evaluate a subset of the
prior distribution components.

V. THE BRRP METHOD

Our method takes a single RGBD image and produces
reconstructions for each object in the scene. We treat the
problem as a Bayesian inference problem over an observation
described by negative samples. We incorporate prior infor-
mation on the shape of the object by leveraging retrieval-
augmented priors introduced in Section IV. We use CLIP [39]
to determine which objects to retrieve and define our object-
specific priors by a registered set of pre-computed samples
from the stored mesh. We then use SVGD to optimize
for a set of samples over map weights. We can generate
predicted reconstructions by taking the expected occupancy
over our weights for a given location. Figure 3 shows a visual
overview of our method.

In Section V-A, we explain how we leverage pre-existing
mesh assets to create a prior that is robust to different
poses and scales. Then, in Section V-B, we explain how
we utilize the retrieval-augmented priors paradigm to retrieve
relevant objects in the prior. The specific negative sampling
is explained in Section V-C. Then we give the specific SVGD
objective used in Section V-D.

A. Negative Samples as Reconstruction Priors

We want to leverage existing mesh assets as our priors
during Bayesian reconstruction. We define our prior as a
mixture over different objects, c1, ..., cC . Because there is
not a direct way to convert a mesh into a Hilbert map, we
instead sample points x̃c,1, ..., x̃c,Q ∈ R3 around each object
c’s mesh. We refer to these samples as the prior samples.
We give them labels ỹc,1, ..., ỹc,1 ∈ {−1, 1} determined by
whether they are outside or inside the mesh. Then we simply

define our prior using this data combined with a Gaussian
prior over weight norm:

P (w|c) :=P ({ỹc,i}|{x̃c,i},w)P (w) (5)

∝ exp(λ∥w∥2)
Q∏
i=1

exp
(
BCE(ỹc,i,w⊤ϕ(x̃c,i)

)
,

(6)
where BCE is the same as in Equation (1).

In order to enforce pose-invariance, we first register a small
stored point cloud of the object to the observed points and
then transform the prior samples to this reference frame.
In practice we use RANSAC [40] and the FPFH features
from [41] to perform registration. In order to also have scale
invariance, we do a linear scan over 10 different scales and
select the the scale that resulted in the most inlier pairs from
the registration.

B. Retrieval-Augmented Priors for Hilbert Maps

Because it would be inefficient to register all meshes that
are part of the prior mixture model, we propose using the
retrieval-augmented prior approach introduced in Section IV.
In order to determine which objects to use, we need to
compute P (c|R) from Equation (4). In our case, we use CLIP
[39] as a zero-shot classifier for our different objects. For
each object in our prior, we store a small textual description
of the object. These descriptions are then used as classes for
CLIP to classify each segmented object. In order to make
sure CLIP knows which object we are targeting, we crop the
RGB image to fit the predicted segmentation of each object
and feed the cropped images as input into CLIP.

Once we have the probability of each object, we retrieve
and register the stored point clouds of the top-k objects. After
registration, we retrieve the prior samples corresponding to
these objects to define our prior according to Equation (5).

C. Negative Sampling

We adopt the negative sampling method introduced in
[4]. The negative sampling method makes the assumption
that all objects are lying on or above a planar surface. We



begin by labeling the points segmented to each object as
occupied for that object. Next, we perform stratified sampling
along each camera ray near each object to recover a set of
negatively sampled points, labeled as unoccupied. Then, we
use RANSAC over points not segmented to any object to
recover the flat surface all objects are resting on. This plane
is used to randomly sample points in a sphere underneath
each object that are near the object. We also label these
points as occupied. Finally, we use grid subsampling from
[42] to reduce the number of points and increase uniformity
of sampled points. We refer to these points and labels as ob-
served samples and denote them as {xi}i∈[S], {yi}i∈[S]. The
entire negative sampling process can be easily parallelized
for efficient computation.

D. SVGD Reconstruction

Once we have retrieved our prior samples and computed
our observed samples, we can perform optimization-based
reconstruction with SVGD. Given both sets of samples and
our prior definition from Equation (5), we have the following
posterior distribution:

P ({yc,i}|{xc,i},w)P (w)
∑
c∈topk

P (c|R)P ({ỹc,i}|{x̃c,i},w),

taking the log and applying Equation (6) gives us the follow-
ing objective:

S∑
i=1

BCE(yi,w⊤ϕ(xi))

+
∑
c∈topk

P (c|R) ln

[
Q∑
i=1

exp
(
BCE(ỹc,i,w⊤ϕ(x̃c,i))

)]
+ λ∥w∥2 + const.

In practice, we introduce multipliers to each term as hyper-
parameters during optimization, drop the constant, and use
means instead of sums, creating the following objective:

λ3

S

S∑
i=1

BCE(yi,w⊤ϕ(xi)) (7)

+
λ2

K

∑
c∈topk

P (c|R) ln

[
1

Q

Q∑
i=1

exp
(
BCE(ỹc,i,w⊤ϕ(x̃c,i))

)]
(8)

+ λ3∥w∥2, (9)

where K is the number of objects retrieved for the prior.
This objective is used as the log of the target distribution,
lnP (w), in Equation (2), where we also adopt the original
median kernel suggested in [36]. We also opt to use SVGD
in a stochastic manner, where both the observed samples and
query samples are mini-batched.

From a non-probabilistic standpoint, one can interpret
Equation (7) as the likelihood of the observed data, Equa-
tion (8) as the object shape prior, and Equation (9) as a
regularization term.

Figure 4: Sample images of procedurally generated scenes used to
evaluate BRRP. Left: a YCB scene. Right: a ShapeNet scene.

Method ShapeNet Scenes YCB Scenes Objaverse Scenes

V-PRISM [4] 0.3092 0.5003 0.4640
PointSDF [23] 0.3600 0.4601 0.3471

BRRP (ours) 0.3124 0.5277 0.4809

Table I: Intersection over union (IoU) on procedurally generated
scenes from three different mesh datasets. BRRP uses a YCB prior
and PointSDF is trained on ShapeNet scenes.

VI. EXPERIMENTS

In this section, we aim to experimentally validate the
following claims: (1) BRRP is more robust than deep learning
methods; (2) BRRP is more accurate than methods that
use uninformative priors; (3) BRRP can capture principled
uncertainty. We begin by providing details on the experiments
such as the baselines and metrics in Section VI-A, then we
introduce results and analyses in Section VI-B

A. Experimental Details

BRRP Implementation: We use a set of 50 objects from
the YCB dataset [43] to act as the prior for our experiments
with BRRP. We implement the method in PyTorch and run
the method on an NVIDIA RTX GeForce 2070 GPU.

Baselines: We compare our work against two main base-
lines, V-PRISM [4] and a version of PointSDF [23] that
predicts occupancy and is trained on ShapeNet [44] scenes.
V-PRISM is a probabilistic mapping method that uses an
uninformative prior. This means that it is robust to novel
objects, but doesn’t accurately reconstruct object backsides.
We refer to this baseline as V-PRISM. In contrast, PointSDF
is a learning-based method. This means it can leverage prior
information from mesh datasets to accurately reconstruct the
backside, but can suffer in performance under significant
distributional shift. We refer to this baseline as PointSDF.
When computing reconstruction meshes with PointSDF, a
level set of τ = 0.3 is used.

Figure 5: Chamfer distances (lower is better) for various methods
across the procedurally generated scenes. Values are reported in
centimeters. BRRP has the lowest chamfer distance on each dataset.



Figure 6: Qualitative comparison of BRRP and our baselines. PointSDF tends to predict a spherical shape for many non-spherical objects.
V-PRISM can sometimes predict occupancy in portions of the scene that are not occupied. Our method is more robust and can more
accurately reconstruct the scenes.

Procedurally Generated Scenes: We use the generated
scenes from [4] to evaluate our method. These scenes are
constructed with objects from ShapeNet [44], YCB [43],
and Objaverse [45] datasets. There are 100 multi-object
scenes for each mesh dataset. Each scene contains up to
10 objects. Some meshes in the Objaverse and ShapeNet
scenes did not have correctly rendered textures and were
instead rendered as plain white objects. Figure 4 contains two
example images of these procedurally generated scenes. We
also conduct an experiment on robustness where we perturb
instance segmentation of the ShapeNet scenes by 2 pixels
and evaluate reconstructions.

We evaluate performance on the procedurally generated
scenes with two metrics: intersection over union (IoU) and
chamfer distance. We refer readers to [4] for further expla-
nation of these metrics.

Real World Scenes: In order to showcase robustness to
real-world noise, we evaluate on real world scenes collected
with a Kinect depth camera. In order to obtain instance
segmentations, we use Grounded SAM [46] along with some
depth filters. We evaluate on these real world scenes quali-
tatively with images of scene reconstruction and visualizing
surface uncertainty.

B. Results

In Table I, we display the IoU results from procedurally
generated scenes. The chamfer distances for the procedurally

generated scenes is shown in Figure 5. The qualitative
reconstructions on real world scenes can be seen in Figure 6.

Insight 1: BRRP is more accurate than a method with an
uninformative prior.

As showcased in Table I, BRRP outperforms V-PRISM
on each set of procedurally generated scenes. It has the
highest IoU improvement from V-PRISM on the YCB scenes.
A similar pattern can be seen in the chamfer distances in
Figure 5, where BRRP consistently outperforms V-PRISM,
with the biggest gap of 0.19 (cm) occuring on the YCB
scenes. This makes sense because BRRP uses a subset of
the YCB objects as its prior.

We can see this improvement qualitatively in Figure 6.
While BRRP and V-PRISM are comparable for most objects,
there exist certain objects that V-PRISM predicts to occupy a
large portion of space that the object doesn’t occupy. BRRP is
able to more accurately reconstruct these objects. The clearest
example of this is the dark green object in the right-most
scene in Figure 6.

Both of these quantitative and qualitative results suggest
BRRP is generally more accurate than V-PRISM. It is the
most accurate when evaluated on objects in its prior distri-
bution.

Insight 2: BRRP is more robust than a deep learning
method.

While PointSDF outperformed BRRP on the ShapeNet
scenes on IoU (Table I), BRRP had a lower Chamfer distance



Figure 7: (a) IoU of BRRP and PointSDF on ShapeNet scenes with
and without shifted segmentations. Our method is more robust to
segmentation shifts. (b) An example of a scene and the correspond-
ing point cloud with shifted segmentation.

Figure 8: Visualization of a cylindrical Clorox container surface
uncertainty from BRRP. Lighter areas correspond to higher uncer-
tainty about the shape. We observe that the occluded back-side of
the container has high uncertainty.

(Figure 5). BRRP also performed better on mesh datasets
that PointSDF was not trained on. In Table I, we can see
that on Objaverse scenes, where the objects were novel to
both methods, BRRP performed better than PointSDF. When
measuring chamfer distance, BRRP outperformed PointSDF
on all datasets as shown in Figure 5. These results suggests
BRRP is more robust to different object distributions than
PointSDF.

Next, we evaluate robustness to slightly incorrect instance
segmentations. We take the procedurally generated ShapeNet
scenes and shift the segmentation over by 2 pixels. In
Figure 7, we compare the IoU of BRRP and PointSDF on
the scenes with and without the shift. Our method performs
better on the shifted scenes compared to PointSDF.

On the real world scenes in Figure 6, BRRP is qualitatively
more robust than PointSDF. PointSDF struggles with the
noise associated with real world scenes as well as the novel
objects. It tends to predict a spherical object on many non-
spherical objects in the real world scenes. Our method on
the other hand, is better able to reconstruct these scenes,
including the objects that are out-of-distribution for its prior.

These results suggest BRRP is more robust than PointSDF.
Even though by one metric PointSDF outperforms BRRP
on ShapeNet scenes, when the scenes are perturbed BRRP
performs better.

Insight 3: BRRP can capture principled uncertainty about
object shape.

Figure 8 shows a qualitative example of uncertainty from
BRRP. We measure the uncertainty by taking the variance of
logits over weight particles. Our method predicts the highest
uncertainty in areas of the surface that are occluded. This
suggests that we can utilize surface uncertainty from BRRP
in a similar way to how GPIS surface uncertainty is utilized

in many grasping applications.

VII. CONCLUSION

We introduced the concept of retrieval-augmented priors,
where we retrieve relevant components of a prior distribu-
tion during Bayesian inference. We also introduced a novel
Bayesian method for scene reconstruction that uses infor-
mative priors. Our method, BRRP, leveraged existing mesh
datasets to build its prior and probabilistically reconstructed
the scene leveraging these priors in a retrieval-augmented
manner. We experimentally showed our method was more
robust than a deep learning method as well as more accurate
than a mapping method. Finally, we showed a qualitative ex-
ample of recovering principled uncertainty from our method.
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